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SUMMARY

The algebraic flux correction (AFC) paradigm is equipped with efficient solution strategies for implicit
time-stepping schemes. It is shown that Newton-like techniques can be applied to the nonlinear systems of
equations resulting from the application of high-resolution flux limiting schemes. To this end, the Jacobian
matrix is approximated by means of first- or second-order finite differences. The edge-based formulation
of AFC schemes can be exploited to devise an efficient assembly procedure for the Jacobian. Each
matrix entry is constructed from a differential and an average contribution edge by edge. The perturbation
of solution values affects the nodal correction factors at neighbouring vertices so that the stencil for
each individual node needs to be extended. Two alternative strategies for constructing the corresponding
sparsity pattern of the resulting Jacobian are proposed. For nonlinear governing equations, the contribution
to the Newton matrix which is associated with the discrete transport operator is approximated by means
of divided differences and assembled edge by edge. Numerical examples for both linear and nonlinear
benchmark problems are presented to illustrate the superiority of Newton methods as compared to the
standard defect correction approach. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For decades, the development of reliable discretization techniques for convection-dominated flows
has been one of the primary interests in computational fluid dynamics. A variety of stabilization
techniques and high-resolution schemes based on flux/slope limiting have been presented in the
literature to combat the formation of non-physical oscillations which would be generated otherwise.
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612 M. MÖLLER

As a matter of fact, a serious disadvantage of many existing numerical schemes is their lack
of generality. The foundations of modern high-resolution schemes were developed in the finite
difference framework using essentially one-dimensional concepts and, typically, geometric criteria.
As a consequence, most algorithms popular today are only suitable for Cartesian meshes and/or
explicit time stepping.

The origins of modern high-resolution schemes can be traced back to the renowned SHASTA
scheme by Boris and Book [1] who set up the flux-corrected transport (FCT) methodology in
the realm of finite differences. The fully multidimensional generalization proposed by Zalesak [2]
has put FCT algorithms into a general framework: the solution is computed by blending linear
approximations of high and low order so as to prevent the formation of wiggles. This reformulation
has paved the way for the generalization of FCT concepts to explicit Galerkin schemes based on
(bi-)linear finite element discretizations on unstructured meshes [3, 4]. As an alternative, total
variation diminishing (TVD) schemes have been introduced in the context of finite differences
[5, 6] and extended to explicit finite element/volume schemes [7, 8].

Classical FCT schemes are based on an explicit correction of the auxiliary low-order solution
whose local extrema serve as upper/lower bounds for the sum of limited antidiffusive fluxes.
Due to the explicit nature, the time step must satisfy a restrictive ‘CFL’ condition which may
increase the computational costs especially for steady-state problems. Furthermore, the use of
stable discretizations, e.g. Taylor–Galerkin, is mandatory for the overall success of the flux limiter.
In particular, the use of an unstable high-order method may give rise to nonlinear instabilities
which manifest themselves in distortions of the ‘corrected’ solution profiles.

These restrictions have led to the development of a generalized FEM-FCT methodology intro-
duced by Kuzmin and Turek [9] and refined by Kuzmin et al. [10–12]. Flux correction of FCT type
is readily applicable to Galerkin schemes with a consistent mass matrix. The use of a second-order
Crank–Nicolson time discretization suggests itself for the simulation of strongly time-dependent
problems. In comparison to their explicit counterparts, semi-implicit schemes considerably relax
the ‘CFL’ condition and allow for employing moderate time steps. Moreover, unconditionally
stable implicit methods can be operated at arbitrarily large time steps (unless iterative solvers fail
to converge or the positivity criterion is violated) which makes them a favourable tool for the
efficient treatment of steady-state problems.

For flux correction of FCT type, the amount of admissible antidiffusion is inversely proportional
to the time step, which compromises the advantages of unconditionally stable implicit schemes.
On the other hand, flux limiting schemes of TVD type are independent of the time step, and
hence, they represent a good candidate for the treatment of stationary problems. Standard TVD
limiters can be integrated into unstructured grid codes and applied edge by edge [7, 8] or node
by node [13, 14], so as to control the slope ratio for a local one-dimensional stencil or the net
antidiffusion, respectively. Recently, a subtle consolidation of FCT and TVD paradigms has been
proposed by Kuzmin [15], who presented a general purpose limiter that can be applied to transient
and steady-state problems alike. In essence, the new algorithm represents the successful marriage
of a symmetric flux limiter for the contribution of the consistent mass matrix, which has to be
sacrificed in classical TVD schemes, and an upwind-biased one for monitoring the antidiffusive
contribution of convective fluxes.

In any case, the price to be paid for the great flexibility provided by (semi-)implicit high-
resolution flux correction schemes is a nonlinear algebraic system that has to be solved in each
(pseudo-)time step even if the problem at hand is linear. Due to the fact that the nonlinearity
originates from the discretization, it has no continuous counterpart that could be differentiated
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analytically and supplied to Newton-type methods. Since flux limiters typically make use of non-
differentiable functions, the ‘Jacobian’ is approximated by means of divided differences. In the
present paper, an efficient assembly algorithm for the Newton matrix is devised by exploiting the
edge-based formulation of algebraic flux correction schemes. In general, the sparsity pattern of the
global stiffness matrix needs to be extended by one ‘connectivity layer’, that is, the kth column
of the Newton matrix possesses non-zero entries for all degrees of freedom which are adjacent to
node k and the neighbours thereof. Moreover, the approximate Jacobian for a nonlinear transport
operator can be decomposed into edge contributions so as to allow for an efficient edge-by-edge
assembly. Numerical examples are presented for linear and nonlinear two-dimensional stationary
benchmark problems to demonstrate the benefits of Newton-type methods as compared to standard
defect correction approaches. For the treatment of transient convection problems by means of
implicit FEM-FCT algorithms equipped with an algebraic Newton strategy, the interested reader
is referred to the recent publication [16].

2. ALGEBRAIC FLUX CORRECTION

In this paper, we adopt an algebraic approach to the design of high-resolution schemes which
consists of imposing mathematical constraints on discrete operators so as to achieve certain matrix
properties. A detailed description of this so-called algebraic flux correction (AFC) paradigm can
be found in [9–15, 17]. As a model problem, consider a stationary conservation law for a scalar
quantity u whereby f is a generic and possibly nonlinear flux function

∇ · f(u) = 0 in � (1)

For the time being, let us assume that f is composed by convective and diffusive fluxes, i.e.
f(u) = vu − d∇u, where v= v(x, t) denotes a non-uniform velocity field and d is the physical
diffusion coefficient. The above problem statement is completed by the prescription of concomitant
boundary conditions of Dirichlet and/or Neumann type. Let the equation at hand be discretized
by a high-order finite element (Galerkin) method and apply algebraic flux correction to turn it
into a high-resolution approximation. Even in case the conservation law (1) is linear, this yields a
nonlinear algebraic equation system for the vector of nodal values

K ∗(u)u = 0 (2)

where the modified transport operator exhibits the following structure [13]:
K ∗(u) = L + F(u)= K + D + F(u) (3)

Here, K ={ki j } denotes the original transport operator resulting from the Galerkin finite element
approximation of convective terms. The artificial diffusion operator D = {di j } is designed to elim-
inate all negative off-diagonal coefficients from the high-order operator in order to turn K into its
local extremum diminishing (LED) counterpart L = K + D. The error induced by this so-called
‘discrete upwinding’ technique [9] is compensated by applying an antidiffusive correction term
F(u) which will be addressed in more detail below.
Due to the fact that D is a discrete diffusion operator defined as a symmetric matrix with zero

row and column sums, the term Du can be decomposed into a sum of skew-symmetric internodal
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fluxes which are associated with the edges of the sparsity graph [13]
(Du)i := − ∑

j �=i
fi j , fi j = di j (ui − u j ) = − f j i (4)

Here and below, the stencil Si of node i is defined as the set of indices j for which the finite
element basis functions �i and � j have overlapping supports. As a consequence, there exists an
edge ij in the global stiffness matrix iff j ∈Si and j �= i . For piecewise linear finite elements
their number equals the number of physical mesh edges, whereas multilinear and high-order FEM
approximations allow for interactions of all nodes sharing the same element.

In any case, a natural choice for the artificial diffusion coefficient for the edge ij is [9]
di j = max{−ki j , 0, −k ji } = d ji (5)

As a result, the off-diagonal coefficients of the low-order operator li j := ki j + di j�0 are non-
negative which is a prerequisite for our scheme to possess the LED property [18, 19]. Due to the
fact that the operator D exhibits zero row sums, the diagonal entries of L are given by

li i := kii − ∑
j �=i

di j (6)

For our purpose, it is expedient to introduce the following convention: without loss of generality,
let the edge ij be oriented so that l j i�li j = max{0, ki j }, which implies that node i is located
‘upwind’ and corresponds to the row number of the eliminated negative coefficient [13].

The skew-symmetric raw antidiffusive flux fi j from node j into its upwind neighbour i which
offsets the error induced by our discrete upwinding is defined in (4). In order to prevent the
formation of non-physical local extrema, it is multiplied by a suitable correction factor 0��i j�1
which is determined by means of a multidimensional flux limiter (see below). As a result, the net
antidiffusion which is applied to the upwind node i can be expressed as follows:

(Fu)i = ∑
j �=i

f ∗
i j , f ∗

i j := �i j fi j (7)

By definition, the downwind node j receives the flux f ∗
j i := − f ∗

i j which is of the same magnitude
but exhibits the opposite sign so that there is no net loss or gain of mass.

Putting it all together, the contribution of the modified transport operator K ∗(u) applied to the
vector of nodal unknowns u can be expressed for each node i as follows:

(K ∗u)i = ∑
j �=i

k∗
i j (u j − ui ) + ui

∑
j
k∗
i j (8)

In the above equation, the solution-dependent matrix coefficients are given by

k∗
i j = ki j + (1 − �i j )di j , k∗

i i = kii − ∑
j �=i

(1 − �i j )di j (9)

whereby the reactive term in Equation (8) represents a discrete counterpart of−u∇·v. It vanishes for
divergence-free velocity fields and is responsible for a physical growth of local extrema otherwise.
Due to the zero row sum property of the operator D, it is not affected by discrete upwinding and
algebraic flux correction.

At the end of the day, the modified transport operator K ∗(u) defined in (3) represents a nonlinear
combination of the low-order scheme (�i j ≡ 0) and the original high-order one (�i j ≡ 1). The task
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of the flux limiter is to determine an optimal correction factor �i j so as to remove as much artificial
diffusion as possible without generating spurious oscillations.

The idea of node-based flux limiting can be traced back to the multidimensional FCT limiter
proposed by Zalesak [2] and has been adopted in the AFC framework [9–15, 17]. In short, an-
tidiffusive fluxes fi j = pi j (u j − ui ) which are proportional to solution differences multiplied by
coefficients pi j�0 violate the LED criterion introduced in [18, 19], and hence, need to be limited.
On the other hand, edge contributions with non-negative coefficients resemble diffusive fluxes and
are harmless. Some portion of antidiffusion, say, from node j into node i is only admissible if it
can be interpreted as a diffusive flux from another node, that is, if there exists a solution-dependent
coefficient qik�0 such that fi j = qik(uk − ui ).

A general framework for flux correction in multidimensions is presented in a recent publication
by Kuzmin [15]. Here, we will only address upwind-biased flux limiters which are appropriate for
the treatment of stationary problems. For the design of symmetric flux correction schemes which
are more convenient for the treatment of time-dependent flows, the interested reader is referred to
[10, 15] and the references therein.

To begin with, let us ‘prelimit’ the raw antidiffusive flux (4) so as to obtain

f ′
i j = min{di j , l j i }(ui − u j ) (10)

It is worth mentioning that the above flux reduces to fi j , unless both off-diagonal entries of the
high-order operator K are negative (a rather unusual situation).

For each node, the net antidiffusion may consist of both positive and negative edge contributions,
but in the worst case, all fluxes have the same sign. Hence, it is worth treating the positive and
negative ones separately, as proposed by Zalesak [2]. The total amount of raw antidiffusion received
by node i from its downwind neighbours is given by

P±
i = ∑

j∈Ji

max

min
{0, f ′

i j } where Ji = { j �= i : l j i>li j = 0} (11)

The upper/lower bounds to be imposed by the flux limiter can be computed from the off-diagonal
coefficients of the low-order operator L which are non-negative by construction

Q±
i = ∑

j �=i
li j

max

min
{0, u j − ui }, li j�0 ∀ j �= i (12)

For each node, the admissible antidiffusion is given by the nodal correction factors

R+
i = min{1, Q+

i /P+
i }, R−

i = min{1, Q−
i /P−

i } (13)

They are designed so as to enforce the LED constraint |R±
i P±

i |�|Q±
i | for the upwind node.

Consequently, the final correction factor �i j is taken as the nodal multiplier of node i

�i j =
{
R+
i if f ′

i j>0

R−
i otherwise

(14)

so that the (prelimited) antidiffusive flux (10) can be corrected according to f ∗
i j = �i j f ′

i j . For a
detailed description of flux limiting in multidimensions, including rigorous positivity proofs, the
interested reader is referred to the publications [10, 13, 15] and the references therein.
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3. NONLINEAR SOLUTION STRATEGIES

A common practice in the computation of steady-state solutions of partial differential equations is
to march the pseudo-transient counterpart of conservation law (1) to the stationary limit

�u
��

+ ∇ · f(u)= 0 (15)

where � denotes the artificial time variable. Let us adopt the algebraic flux correction approach to
approximate the spatial derivatives and use the fully implicit, unconditionally stable backward-Euler
scheme for the discretization in (pseudo-)time

ML
un+1 − un

��
= K ∗(un+1)un+1 (16)

Here, ML ={mi } denotes the lumped mass matrix counterpart of the consistent mass matrix which
comes from the Galerkin discretization of the time derivative. Due to the fact that the backward-
Euler method is unconditionally positivity-preserving [9], it can be operated at arbitrarily large
steps ��. Interestingly enough, algebraic flux correction methods of TVD type [13, 14] are derived
on the semi-discrete level, and hence, they are independent of the employed (pseudo-)time step
size. As a consequence, the converged steady-state solution to problem (16) can be computed very
efficiently if �� → ∞ for n → ∞ without loss of accuracy.

It is noteworthy that the implicit Euler method (16) leads to algebraic equations which are very
similar to those resulting from the use of under-relaxation applied to steady-state flow problems
[20, pp. 148–149]. If the same time step is adopted for all equations, this corresponds to taking a
variable under-relaxation factor for each nodal equation. Conversely, the use of a constant under-
relaxation factor is equivalent to adopting a different time step for the computation of each nodal
solution value un+1

i by means of pseudo-time-stepping.

3.1. Fixed-point iteration

As a matter of fact, Equation (16) exhibits some nonlinearity due to flux correction which calls
for an iterative solution strategy even if the governing equation is linear. To make the presentation
self-contained, let us recapitulate nonlinear solution techniques in a more general framework and
apply them to the residual form of the algebraic system (16) afterwards

gn+1 := [ML − ��K ∗(un+1)]un+1 − MLu
n = 0 (17)

Given the global vector of unknowns u which may be either the solution from the last pseudo-time
step (u = un) or an initial guess (u = u0), the end-of-step solution un+1 at ‘time’ �n+1 = �n + ��
can be computed by the (possibly relaxed) fixed-point iteration

u(m+1) = u(m) − �(m)[C (m)]−1g(m), u(0) = u, m = 0, 1, 2, . . . (18)

Here, �(m) denotes the damping parameter of the mth cycle and C (m) is a suitable ‘preconditioner’
to be defined below. The iteration process is terminated based on a required drop in the norm of
the residual and/or a sufficiently small solution increment

‖g(m+1)‖� �1‖g(0)‖, ‖�u(m+1)‖ � �2‖u(m)‖
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Here, �1 and �2 are user-defined parameters, ‖ · ‖ denotes an arbitrary norm and the term
�u(m+1) = u(m+1) − u(m) refers to the solution increment to be computed.

Note that, monitoring only the relative changes may be insufficient since small values of the
relaxed solution increment may also be caused by strong under-relaxation |�(m+1)| � 1 which
leads to extremely slow convergence. Moreover, theoretically motivated stopping criteria can be
designed as discussed in [21, 22] making use of the fact that the iteration procedure results from
a finite element approximation of a partial differential equation.

In a practical implementation, the ‘inversion’ of the preconditioner matrix C (m) is also performed
by a suitable iteration procedure for solving the linear subproblem

C (m)�u(m+1) = − g(m), m = 0, 1, 2, . . . (19)

After a certain number of inner iterations, the resulting increment �u(m+1) is applied to the last
iterate, whereby the vector of unknowns u provides a reasonable initial guess

u(m+1) = u(m) + �(m+1)�u(m+1), u(0) = u (20)

It remains to specify a suitable preconditioner. A multivariate Taylor expansion of the residual
term g(m+1) about the current state u(m) yields the following approximation:

g(m+1) � g(m) + J (m)(u(m+1) − u(m)) (21)

which requires the evaluation of the Jacobian matrix at the last iterate u(m), that is

J (m) ={J (m)
i j } where J (m)

i j = �gi (u)

�u j

∣∣∣∣
u = u(m)

(22)

Neglecting terms of higher-order curvature in the linearized model (21) and recalling the postulated
relation gn+1 = 0, one ends up with the well-known Newton method

u(m+1) = u(m) − [J (m)]−1g(m) (23)

It can be readily derived from the iteration scheme (18) by setting C (m) = J (m).
Another attractive algorithm for the solution of nonlinear equations that turns (18) into a fixed-

point defect correction procedure [23] is based on the ‘monotone’ low-order operator

C (m) = ML − ��L(m) (24)

which was designed to be an M-matrix and hence exhibits favourable matrix properties [12, 14].
It is worth mentioning that intermediate solutions u(m) are not required to be positive so that

convergence of algorithm (18) is a prerequisite for positivity. The use of an iterative solver appli-
cable to large sparse, non-symmetric systems of linear equations is mandatory. In our experience,
Krylov subspace methods such as BiCGSTAB and GMRES, combined with preconditioning of
ILU type will do. Interestingly enough, the incomplete LU factorization of the low-order operator
(24) unconditionally exists and is unique due to the M-matrix property [24]. Hence, it is advisable
to use it as preconditioner for the Krylov subspace method even if the Jacobian matrix (22) is
adopted in the outer iteration procedure (18).

It is well known that the performance of Newton’s method strongly depends on the quality of
the initial guess u. For the solution of the steady Euler equations, Hemker and Koren [25] suggest a
two-step defect correction approach. A provisional first-order solution for the stationary problem is
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computed directly, that is, without resorting to pseudo-time stepping. Next, the low-order profile is
used as initial guess for a second-order accurate defect correction iteration, whereby the first-order
operator serves as a preconditioner.

Within a Newton iteration approach, this idea may be adopted as follows. As before, let u
denote the initial solution for the current iteration step, i.e. u = un for time-dependent problems
or u = u0 in the stationary case. In order to obtain a usable initial guess for the Newton iteration,
perform a small number of ‘presmoothing’ steps. To this end, the low-order operator (24) can be
applied either per se (without resorting to algebraic flux correction) or as a preconditioner within
a high-resolution flux/defect correction scheme. After a few iterations, the full Jacobian (22) is
used so that the iteration procedure (18) yields Newton’s algorithm.

3.2. Globalization

Since the linear system (19) is solved iteratively, and hence, the computation of the ‘exact’ solution
of the Newton equation is quite costly, the resulting algorithm is categorized as an inexact Newton
method [26]. Obviously, the accuracy of the (inner) linear solver greatly affects the convergence
behaviour of the (outer) nonlinear Newton algorithm. If the linear subproblems are not solved
accurately enough more Newton steps are required, and hence, the nonlinear convergence rate
deteriorates. Conversely, a very small tolerance for the linear solver results in a drastic increase of
inner iterations which does not pay off. Moreover, if u(m) is not sufficiently close to the desired
root then the linearization by means of the Taylor series expansion (21) may not reflect the
behaviour of the nonlinear residual (17) very well. As a consequence, solving the linear system
(19) for the increment �u(m+1) with high accuracy one may obtain a poor Newton update which
deteriorates the nonlinear convergence behaviour [27, 28]. This phenomenon is typically known as
oversolving [29].

A common practice is to choose the so-called forcing term �(m) ∈ [0, 1) a priori and require
the linear solver to compute the increment �u(m+1) from the Newton equation (19) to a certain
accuracy so that the following convergence criterion holds:

‖g(m) + J (m)�u(m+1)‖��(m)‖g(m)‖ (25)

Recall that the left-hand side of the above inequality is both the residual of the linear subproblem
and the linearized model of g(m+1) given by the first-order terms of the Taylor series expansion
(21). Several strategies for choosing the forcing term in an adaptive fashion are proposed by
Eisenstat and Walker [29, 30]. A viable choice is to employ

�(m+1) = �(‖g(m+1)‖/‖g(m)‖)�, �(0) ∈ [0, 1) (26)

where the auxiliary coefficients �∈ [0, 1] and � ∈ (1, 2]. In our simulations, we adopted � = 0.5
and � = (1 + √

5)/2 as proposed in [30]. A local convergence theory of inexact Newton methods
and a detailed discussion about the impact of forcing terms is given in [26].

It is well known that this technique is prone to diverge for crude starting values. Due to this lack
of convergence robustness, the use of some ‘globalization’ technique is mandatory. To this end,
the computed solution increment needs to be relaxed by the factor �(m+1) so that the sufficient
decrease condition holds on each Newton step [30]

‖g(u(m) + �(m+1)�u(m+1))‖�[1 − �(1 − �(m))]‖g(m)‖ (27)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:611–635
DOI: 10.1002/fld



EFFICIENT SOLUTION TECHNIQUES FOR IMPLICIT FINITE ELEMENT SCHEMES 619

where � ∈ (0, 1) represents the prescribed reduction tolerance. In practice, line search and trust
region methods are frequently employed to compute an acceptable increment [31, 32]. In our
implementation, we make use of a simple backtracking strategy [27] which computes �(m+1) as
the minimizer of 1

2‖g(u(m) + �(m+1)�u(m+1))‖2 by means of quadratic interpolation.

4. CALCULATION OF JACOBIANS

Now that we have discussed solution strategies for nonlinear problems in a general framework,
let us consider the calculation of the Jacobian matrix so as to build up the preconditioner matrix
C (m) = J (m) for the fixed-point iteration (18). For simplicity, let us omit the superscript m in what
follows. The formal definition (22) requires the ‘differentiation’ of the modified transport operator
K ∗(u) which consists of diffusive and antidiffusive contributions (9). Recall the fact that flux
limiters frequently make use of functions which lack the global differentiability [10, 13, 15] so that
no analytical expression for the Jacobian is available.

The use of an iterative method, such as BiCGSTAB or GMRES, for the solution of the linear
system (19) only requires the computation of Jacobian-vector products which may be approximated
by means of first-order (forward/backward) divided differences

Jv � ±g(u ± 	v) − g(u)

	
(28)

Alternatively, the product Jv can be approximated by the second-order central difference

Jv � g(u + 	v) − g(u − 	v)

2	
(29)

which requires a double evaluation of the nonlinear residual. In practice, the performance of
Newton’s method is quite sensitive [33] to the size of the perturbation parameter 	 which should
be sufficiently small to obtain a good approximation to the derivative. Following a strategy proposed
by Nielsen et al. [34], the step size can be determined using the expression

	‖v‖= √
� (30)

where � denotes the machine precision. Some alternative choices are given in a survey paper on
Jacobian-free Newton–Krylov methods by Knoll and Keyes [35].

What makes such matrix-free approaches most attractive at first glance is their Newton-like
nonlinear convergence behaviour without the costs of computing and storing the Jacobian explicitly.
However, these advantages are not as overwhelming as one might immediately think. For finite
element problems, the Jacobian matrix is typically very sparse and hence the savings in terms of
memory usage are insignificant. The crucial point is that there are only few preconditioners which
can be applied without knowing the system matrix explicitly [36]. As a consequence, the iteration
process may converge poorly or even fail to converge at all. If approximate preconditioners are
employed, the use of sophisticated flexible GMRES [37] or GMRES-R Krylov subspace methods
[38] is mandatory which call for some extra dense vector storage. Finally, the costs of performing
flux correction following the algorithmic steps (10)–(14) in each iteration of the linear solver
rapidly grow to an impractical amount.

In light of the above, the explicit formation of Jacobians gains more attraction, provided
a sufficiently accurate approximation can be computed at reasonable costs. For our purpose,
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it makes sense to introduce the divided difference operator Dk for a generic function f (u) so that
each entry of the Jacobian can be approximated with second-order accuracy

Dk[ f ] := f (u + 	ek) − f (u − 	ek)

2	
⇒ Jik =Dk[gi ] (31)

whereby ek denotes the kth unit vector. The approximation error is proportional to 	2 which,
adopting definition (30) for the perturbation parameter 	, is the same for all columns.

4.1. Discrete transport operators

Algebraic flux correction schemes [9–15, 17] are designed as ‘black-box’ post-processing tools
which extract all required information from the matrix and make use of the solution values to
modify the right-hand side and the residual, respectively. With this observation in mind, definition
(31) may be used to devise a straightforward algorithm for assembling the Jacobian. In essence,
each column of the matrix J can be constructed by taking the difference between the residuals
evaluated at the ‘perturbed’ solutions u±	ek and scaling the result by 2	. However, this approach
is prohibitively expensive since it does not exploit the sparsity pattern of the stiffness matrix. A
common practice in finite element methods is to assemble the Jacobian matrix element by element
[39]. As we are about to see, the edge-based formulation of our algebraic flux correction techniques
can be utilized to construct J edge by edge.

Let us split the Jacobian matrix into its convective part T ∗ = {t∗i j } and the contribution resulting
from the pseudo-time discretization so as to obtain

J = ML − ��T ∗ + O(	2), t∗i j =
�(K ∗(u)u)i

�u j
(32)

Recall that the modified evolution operator K ∗(u) given by Equation (3) represents a nonlinear
combination of the original high-order operator K and its low-order counterpart L = K +D which
can be recovered by varying �i j between zero and unity. Therefore, it suffices to devise an efficient
algorithm for evaluating the convective operator T ∗ whose entries can be approximated by divided
differences t∗ik =Dk[K ∗(u)u]i with second-order accuracy. Let us replace both matrix–vector
products by the decomposition (8) so as to obtain

t∗ik = ∑
j �=i

k∗
i j (u + 	ek)

2	
(u j + 	
 jk − ui − 	
ik) + (ui + 	
ik)

∑
j

k∗
i j (u + 	ek)

2	
(33)

−∑
j �=i

k∗
i j (u − 	ek)

2	
(u j − 	
 jk − ui + 	
ik) − (ui − 	
ik)

∑
j

k∗
i j (u − 	ek)

2	
(34)

where 
ab denotes the standard Kronecker delta symbol. In addition to the divided difference
operator Dk , let us define the standard average Ak for a generic function f as follows:

Ak[ f ] := f (u + 	ek) + f (u − 	ek)

2
(35)
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As a consequence, the above expression for the coefficient t∗ik can be cast into the form

t∗ik =Ak[k∗
ik] + ∑

j �=i
Dk[k∗

i j ](u j − ui ) + ui
∑
j
Dk[k∗

i j ] (36)

According to definition (9), the contributions of the modified transport operator are given by

Ak[k∗
i j ] = Ak[ki j ] + Ak[(1 − �i j )di j ],

Dk[k∗
i j ] = Dk[ki j ] + Dk[(1 − �i j )di j ],

j �= i (37)

Due to the zero row sum property of discrete diffusion operators, the diffusive contribution cancels
out in the last term of (36) so that only the Galerkin part Dk[ki j ] is present in the second sum of
t∗ik . Moreover, the average term on the diagonal of T ∗ is given by

Ak[k∗
i i ] =Ak[kii ] − ∑

j �=i
Ak[(1 − �i j )di j ] (38)

Let us consider the special case that flux limiting is deactivated (�i j ≡ 1) so that Equation (36)
yields the approximate Jacobian contribution T H = {t Hi j } of the original high-order scheme

t Hik =Ak[kik] + ∑
j
Dk[ki j ]u j (39)

Interestingly enough, this expression represents the divided difference approximation of K + K ′u,
whereby the average term can also be replaced by kik . Likewise, the approximate derivative of the
operator L is recovered from (36) if all coefficients �i j are equal to zero

t Lik =Ak[lik] + ∑
j
Dk[li j ]u j (40)

We would like to emphasize the fact that the decomposition into individual contributions (39)
and also (40) provides an efficient alternative to the traditional element-by-element procedure [39]
which is commonly used to assemble Jacobians arising from finite element discretizations. It is
noteworthy that for typical evolution operators K (u) or L(u), most contributions to the off-diagonal
entries are likely to vanish in a practical implementation.

So far, the conservation law (1) is supposed to be nonlinear so that the operator K ∗(u) depends
on the unknown solution vector u due to both a physical/natural and a numerical nonlinearity. The
latter one results from the application of algebraic flux correction and is still present in the case
of a linear governing equation. In this situation, the discrete derivative of the high-order transport
operator K vanishes, i.e. Dk[ki j ] = 0 in relation (37), so that

t∗ik =Ak[k∗
ik] + ∑

j �=i
Dk[1 − �i j ]di j (u j − ui ) (41)

Note that the artificial diffusion coefficient di j no longer depends on the solution vector u, and
hence, it is not affected by the divided difference approximation. Moreover, the last term in the
more general definition (36) vanishes due to the zero row sum property of discrete diffusion
operators. With these observations in mind, it is easy to verify that the differentiation only affects
the net correction factors (1 − �i j ) which are still nonlinear, whereas the derivative of the linear
transport operator K and that of the discrete diffusion term D are no longer present in the Jacobian
matrix (36). As before, the average term can be replaced by the operator K ∗(u).
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4.2. Sparsity pattern

As a rule, node-oriented flux limiters give rise to some fill-in of the Jacobian, i.e. the stencil of
T ∗ is wider than that of K ∗. This is due to the fact that perturbation of the nodal solution value
ui affects the diffusion coefficients di j as well as the corresponding correction factors �i j .

To begin with, consider an unstructured mesh consisting of conforming triangles and/or quadri-
laterals as shown in Figure 1 (left). Recall that the stencil of node k is defined as the set of vertices
l for which the finite element basis functions have overlapping support. For the time being, the
orientation convention introduced in Section 2 is neglected. The sparsity pattern of the global
system matrix can be constructed by considering all sets Sk . In Figure 1 (left), the dashed lines
point to the column numbers of non-zero entries in the kth row of the finite element matrix.
Likewise, for each of these neighbours the corresponding rows exhibit a non-zero entry in the kth
column due to the symmetry of the undirected connectivity graph.

From the definition of the stencil Sk , it follows that the perturbation of the solution vector u at
vertex k only affects the quantities P±

l and Q±
l defined in (11)/(12) if l ∈Sk . As a consequence,

the corresponding multipliers R±
l need to be recomputed from formula (13). For all other nodes i

which are not comprised in the set Sk , the nodal quantities P±
i , Q±

i and R±
i coincide with their

unperturbed counterparts which are already known.
Recall that the correction factor �i j is taken as R±

i depending on the sign of the antidiffusive
flux (14). Obviously, local perturbations of the nodal solution value uk are quite likely to affect
the magnitude of �i j if the upwind node i belongs to Sk , i.e. the set of neighbours directly
connected to the perturbed vertex k. In other words, the impact of ‘joggling’ the solution value
uk may propagate along paths of length two until some node j /∈ Sk is reached for which there
exists an edge ij such that i ∈Sk . This observation suggests the definition of an extended list of
neighbouring nodes

S̃k = ⋃
l∈Sk

Sl (42)

so as to reflect the new connectivity pattern of the resulting matrix. The structure of non-zero
entries in the kth column of the Jacobian is illustrated in Figure 1 (right). Those edges ij for which
both the diffusion coefficient di j and the correction factor �i j may exhibit a change in magnitude
due to the perturbation of the solution at node k are marked by dashed edges. Moreover, dots are

Figure 1. Connectivity graph: mass matrix vs Jacobian operator.
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used to indicate those edges which indirectly depend on the perturbed solution value uk . Even
though the corresponding diffusion coefficients di j coincide with their unperturbed counterparts,
the net antidiffusive contributions Dk[1 − �i j ]di j may persist due to different magnitudes of the
multipliers �i j which depend on u ± 	ek .

Interestingly enough, the extended sparsity pattern of the approximate Jacobian resembles that
of the edge-oriented FEM stabilization technique [40, 41]. A detailed description of the underlying
data structure for non-conforming bilinear finite elements is given in [42]. The presented storage
algorithm can be carried over to conforming (bi-)linear finite elements but care must be taken to
avoid duplicate entries in the rows of the finite element matrix.

Let us briefly review some ideas from classical graph theory and devise an alternative storage
algorithm which is directly tailored to conforming (bi-)linear finite elements. In what follows,
A={ai j } denotes the adjacency matrix which represents the undirected connectivity graph of the
stiffness matrix. The corresponding coefficients are given by

ai j ∈ {0, 1} : aii = 1, ai j = 1 ⇔ ∃ij (43)

that is, ai j does not vanish if nodes i and j share the same element. In other words, there exists
a path of length one connecting vertices i and j . Furthermore, let Z = A2 = A · A. Then zi j>0 if
and only if there exists a path of length not longer than two connecting nodes i and j . This can
be easily verified by recalling that

zi j =∑
k
aik ak j>0 ⇔ ∃k : aik = 1 ∧ ak j = 1 (44)

that is, vertex j can be reached from i and vice versa via node k passing two edges. As a result, a
standard algorithm [43] for sparse matrix multiplications can be employed to assemble Z which
can be used to construct the sparsity pattern of the Jacobian matrix.

5. NUMERICAL EXAMPLES

In order to demonstrate the ideas presented in this paper, we apply our algebraic Newton strategy
to a number of two-dimensional benchmark problems and compare the nonlinear convergence
behaviour to that of the classical defect correction procedure.

All tests were performed on an Intel Core2 Duo E6600 (2.4 GHz, FSB 1066 MHz) pro-
cessor with 2048 MB (667 MHz) of system memory. The code was compiled with the Intel
Fortran 9.1 Computer for Linux making use of inter-procedural optimization (-ipo) for the
target platform (-O3 -xT). Moreover, optimized BLAS routine where employed to increase
performance.

5.1. Stationary convection–diffusion

To begin with, consider the model problem (1) and let the flux function f(u) := vu − d∇u so as
to recover the stationary convection–diffusion equation

TP1: v · ∇u − d�u = 0 in � = (0, 1) × (0, 1)
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Figure 2. TP1: FEM-TVD, 128× 128Q1-elements.

where v= (cos 10◦, sin 10◦) is the constant velocity and d = 10−6 denotes the diffusion coefficient.
The concomitant boundary conditions read

u(x, 0) = 0,

u(1, y)= 0,

�u
�y

(x, 1) = 0, u(0, y)=
{
1 if y�0.5

0 otherwise
(45)

The solution to this singularly perturbed elliptic problem is characterized by the presence of a
sharp front next to the line x = 1. The boundary layer develops because the solution of the reduced
problem (d = 0) does not satisfy the homogeneous Dirichlet boundary conditions.

A reasonable initial guess for the desired stationary solution is given by

u0(x, y)=
{
1 − x if y�0.5

0 otherwise
(46)

The numerical solution depicted in Figure 2 was computed by the backward-Euler FEM-TVD
method on a uniform mesh of 128 × 128 bilinear elements. The resolution of the thin boundary
layer is very crisp and moreover the solution is completely free of spurious oscillations.

Recall that the problem at hand is linear so that the nonlinearity stems from the high-resolution
discretization scheme. To analyse the performance of the different nonlinear solution strategies,
we applied them to the pseudo-transient equation (15) on four successively refined quadrilateral
meshes. Since only the converged steady-state solution was of interest for this benchmark, it was
sufficient to perform exactly one nonlinear iteration per time step. One should be aware of the fact
that this technique may not retain the full stability of the implicit Euler method so that the size
of the largest admissible time step may be bounded from above [20]. Nevertheless, this approach
combined with some under-relaxation of the fixed-point iteration (18) allowed for an efficient
computation of the final solution.

In general, stagnation of steady-state convergence is an unpleasant byproduct of limiting schemes
which frequently make use of non-differentiable functions such as themax or themin function. Most
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Table I. TP1: FEM-TVD, defect correction.

NLEV NVT CPU NN NL NL/NN

��= 0.1
5 1089 <1 227 452 1.99
6 4225 1 346 744 2.15
7 16 641 6 457 553 1.21
8 66 049 62 907 1138 1.25

��= 1.0
5 1089 <1 208 1276 6.13
6 4225 3 353 3107 8.80
7 16 641 20 530 4665 8.80
8 66 049 161 1099 6020 5.48

��= 10.0
5 1089 <1 229 2001 8.73
6 4225 5 398 5990 15.05
7 16 641 63 613 17 069 27.85
8 66 049 1343 1268 68 192 53.78

��= 100.0
5 1089 <1 254 2629 10.35
6 4225 7 455 8645 19.00
7 16 641 96 702 26 873 38.28
8 66 049 2371 1509 131 453 87.11

limiters are designed to avoid oscillations and produce highly accurate solution profiles. However,
this concept may lead to severe convergence problems. As a remedy, differentiable limiters [44] can
be employed which lead to more diffusive numerical results. For our simulations, we utilized the
upwind-biased flux limiting approach presented in Section 2 and relaxed the fixed-point iteration
(18) by the under-relaxation factor �= 0.8.

The simulation was stopped once the nonlinear residual (17) satisfied the following criterion:

‖g‖=
√
gTg�10−9 (47)

A detailed comparison between the defect correction method and the algebraic Newton approach
is presented in Tables I and II. The first three columns display the refinement level NLEV, the
number of vertices NVT and the total CPU time required to compute the steady-state solution. In
the next three columns, the total number of nonlinear iterations (NN) which equals the number of
pseudo-time steps, the total number of linear iterations (NL) and the number of linear iterations
per nonlinear iteration (NL/NN) are displayed in successive order.

The results for the standard defect correction approach which corresponds to adopting the
monotone low-order operator C = ML − ��L as preconditioner for the fixed-point iteration (18)
are presented in Table I. Obviously, the nonlinear convergence behaviour deteriorates significantly
if the computational mesh is refined. Taking larger pseudo-time steps goes along with a slight
increase in the number of nonlinear iterations. In addition, the task of the linear BiCGSTAB solver
which is preconditioned by the ILU decomposition of C becomes much more challenging if ��
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Table II. TP1: FEM-TVD, algebraic Newton.

NLEV NVT CPU NN NL NL/NN

��= 0.1
5 1089 <1 82 82 1.00
6 4225 2 66 250 3.78
7 16 641 9 60 386 6.43
8 66 049 56 56 1014 18.11

��= 1.0
5 1089 <1 30 154 5.13
6 4225 1 35 271 7.74
7 16 641 7 36 463 12.86
8 66 049 68 40 1671 41.77

��= 10.0
5 1089 <1 28 182 6.50
6 4225 1 30 393 13.10
7 16 641 7 38 520 13.68
8 66 049 117 75 2832 37.76

��= 100.0
5 1089 <1 33 207 6.27
6 4225 1 36 402 11.17
7 16 641 9 45 589 13.09
8 66 049 111 84 2488 29.62

is increased from 0.1 to 100. Speaking in terms of total CPU time, the standard defect correction
scheme is not competitive for realistically fine grids.

In contrast, the algebraic Newton approach (	 = √
�, � from (26)) being applied to the same

benchmark scenario performs quite well (cf. Table II). A moderate number of nonlinear iteration
steps suffices to compute the steady-state solution for all configurations. The total CPU time is
considerably smaller than that of the defect correction scheme when the computation is performed
on realistically fine grids. As before, the linear convergence rates depend on the size of the pseudo-
time step which is due to the fact that the condition number of the Jacobian matrix J gets worse
for larger ��. We would like to point out that our algebraic Newton algorithm achieves only
superlinear convergence which is the best one can hope for. This may be attributed to the fact that
the ‘artificial’ nonlinearity is engendered by the flux limiter which builds on non-differentiable
functions (see algorithm (10)–(14)). Hence, it is advisable to operate the nonlinear solver with
conservative settings instead of tuning the perturbation parameter 	 and/or the forcing term � for
each individual simulation by hand.

The pseudo-transient behaviour of both solution algorithms is displayed in Figure 3 for the
‘relaxation parameters’ �� = 1 and 10, respectively. For the defect correction scheme, cf. Figure 3
(left), the number of pseudo-time steps which equal the number of nonlinear iterations (see above)
required to obtain the converged solution depends entirely on the mesh width and, to some extent,
on the size of the underlying time step. As depicted in the right diagrams of Figure 3, Newton’s
method requires much less iterations to satisfy the stopping criterion (47) but convergence may be
wiggly or even fail if the quantity M−1

L �� becomes too large. This can be rectified by allowing
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Figure 3. TP1: pseudo-transient convergence, FEM-TVD.

multiple nonlinear iterations per time step or reducing the size of �� adaptively if the residual norm
starts to oscillate. Anyway, finding the optimal ratio between the inner defect correction/Newton
method and the outer pseudo-time stepping loop is still a delicate task which may strongly depend
on the benchmark problem.

5.2. Convection in space–time

The second test case deals with pure convection in the space–time domain �= I × (0, T ). To this
end, let the flux function of our model problem (1) be defined according to

∇ · f(u) := � f (u)

�x
+ �u

�t
(48)
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Figure 4. TP2: low-order vs FEM-TVD.

where f (u) denotes a nonlinear function for the scalar variable u and t ∈ (0, T ) stands for the
physical time. Interestingly enough, the above equation can be interpreted as a one-dimensional
time-dependent conservation law defined on the spatial interval I for which the final solu-
tion is obtained at time T . The reformulation as a two-dimensional steady-state problem cor-
responds to computing the solution values for all time levels simultaneously instead of doing
it step by step. The stationary conservation law (48) is complemented by suitable boundary
conditions which need to be prescribed at the ‘inlet’ of the space–time domain �. Moreover,
the initial data can be chosen arbitrarily since they do not affect the converged steady-state
solution.

For the choice f (u) = 1
2 u

2, the well-known inviscid Burgers’ equation is recovered from (48)

TP2: u
�u
�x

+ �u
�t

= 0

For this nonlinear conservation law, let T = 0.5 be the right endpoint of the time domain and
prescribe the following boundary conditions at the ‘inlet’ of �= (0, 1) × (0, 0.5):

u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0�x<0.4 ∧ t = 0

0.5 if 0.4�x�0.8 ∧ t = 0

0 if 0.8<x�1 ∧ t = 0

or x = 0 ∧ 0�t�0.5

(49)

The numerical solutions computed by the low-order upwind method and the FEM-TVD scheme
on a uniform grid of 32 768 triangles are presented in Figure 4. Both profiles are free of
spurious oscillations but only the use of algebraic flux correction yields an accurate resolu-
tion of the two shock waves and of the smooth transition along the rarefaction fan. In con-
trast, the discontinuities along the shocks are smeared by the overly diffusive upwind
scheme.

The nonlinear convergence behaviour for the monotone low-order method and the FEM-
TVD scheme is presented in Tables III–VI. For this test problem, multiple (<100) nonlin-
ear iterations were accepted and the defect correction/Newton method was supposed to gain
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Table III. TP2: discrete upwind, defect correction.

NLEV NVT CPU NN NN/�� NL NL/NN ‖u − uh‖1 ‖u − uh‖2
��= 0.01
5 1089 <1 228 1.98 228 1.00 8.3934e−2 1.1657e−2
6 4225 2 190 1.98 190 1.00 5.2835e−2 8.3776e−2
7 16 641 5 208 2.36 208 1.00 3.1362e−2 5.9108e−2
8 66 049 29 303 3.61 303 1.00 1.7928e−2 4.1497e−2

��= 0.1
5 1089 <1 57 2.48 148 2.59 8.3934e−2 1.1657e−1
6 4225 <1 63 3.00 233 3.70 5.2835e−2 8.3776e−2
7 16 641 3 74 3.70 367 4.96 3.1362e−2 5.9108e−2
8 66 049 22 103 5.15 690 6.70 1.7928e−2 4.1497e−2

��= 1.0
5 1089 <1 33 3.30 218 6.60 8.3934e−2 1.1657e−1
6 4225 <1 36 4.00 392 10.89 5.2835e−2 8.3776e−2
7 16 641 5 48 5.33 973 20.27 3.1362e−2 5.9108e−2
8 66 049 45 67 7.44 2085 31.12 1.7928e−2 4.1497e−2

Table IV. TP2: discrete upwind, algebraic Newton.

NLEV NVT CPU NN NN/�� NL NL/NN ‖u − uh‖1 ‖u − uh‖2
��= 0.01
5 1089 <1 115 1.00 115 1.00 8.3934e−2 1.1657e−1
6 4225 1 160 1.66 160 1.00 5.2835e−2 8.3776e−2
7 16 641 6 192 2.18 192 1.00 3.1362e−2 5.9108e−2
8 66 049 40 299 3.56 299 1.00 1.7928e−2 4.1497e−2

��= 0.1
5 1089 <1 60 2.61 60 1.00 8.3934e−2 1.1657e−1
6 4225 1 77 3.66 94 1.22 5.2835e−2 8.3776e−2
7 16 641 3 76 3.80 180 2.37 3.1362e−2 5.9108e−2
8 66 049 18 84 4.20 349 4.15 1.7928e−2 4.1497e−2

��= 1.0
5 1089 <1 37 3.70 49 1.32 8.3934e−2 1.1657e−1
6 4225 <1 34 3.78 92 2.70 5.2835e−2 8.3776e−2
7 16 641 2 37 4.11 184 4.97 3.1362e−2 5.9108e−2
8 66 049 15 45 5.00 396 8.80 1.7928e−2 4.1497e−2

two digits per pseudo-time step. In our experience, the use of a more restrictive criterion does
not pay off since the efficiency of the outer time-stepping loop could not be improved sig-
nificantly. For the low-order method, no under-relaxation was adopted but the use of � = 0.8
in Equation (18) was mandatory for the FEM-TVD solution to reach the stationary
limit.
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Table V. TP2: FEM-TVD, defect correction.

NLEV NVT CPU NN NN/�� NL NL/NN ‖u − uh‖1 ‖u − uh‖2
��= 0.01
5 1089 5 4316 7.54 4316 1.00 4.2399e−2 7.8401e−2
6 4225 26 6329 11.72 6329 1.00 2.2989e−2 5.3425e−2
7 16 641 176 8822 20.00 8822 1.00 1.1813e−2 3.4460e−2
8 66 049 1075 11 362 40.43 11 362 1.00 5.7655e−3 1.9679e−2

��= 0.1
5 1089 5 3276 39.47 8462 2.58 4.2399e−2 7.8401e−2
6 4225 24 4443 54.18 11 067 2.49 2.2989e−2 5.3425e−2
7 16 641 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
8 66 049 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

��= 1.0
5 1089 3 1237 82.47 8316 6.72 4.2399e−2 7.8401e−2
6 4225 23 2709 30.78 16 037 5.92 2.2989e−2 5.3425e−2
7 16 641 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
8 66 049 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Table VI. TP2: FEM-TVD, algebraic Newton.

NLEV NVT CPU NN NN/�� NL NL/NN ‖u − uh‖1 ‖u − uh‖2
��= 0.01
5 1089 8 2225 4.03 2225 1.00 4.23990e−2 7.84011e−2
6 4225 39 2661 4.68 2661 1.00 2.2989e−2 5.3425e−2
7 16 641 176 2371 5.75 3675 1.55 1.1813e−2 3.4461e−2
8 66 049 750 2090 6.85 5886 2.81 5.7655e−3 1.9679e−2

��= 0.1
5 1089 2 481 6.17 1336 2.78 4.2399e−2 7.8401e−2
6 4225 10 557 7.23 2867 5.15 2.2989e−2 5.3425e−2
7 16 641 99 1174 19.57 5630 4.79 1.1813e−2 3.4461e−2
8 66 049 732 1814 35.57 9837 5.42 5.7655e−3 1.9679e−2

��= 1.0
5 1089 1 126 9.69 745 5.91 4.2399e−2 7.8401e−2
6 4225 6 236 18.15 2041 8.65 2.2989e−2 5.3425e−2
7 16 641 33 287 26.09 3540 12.33 1.1813e−2 3.4461e−2
8 66 049 252 390 35.45 7494 19.22 5.7655e−3 1.9679e−2

The exact solution to this hyperbolic conservation law can be constructed from the shock speeds
s1 = 0.75 and s2 = 0.25, and the following relation for the rarefaction wave:

u(x, t) =
{
x/0.5 0�x�0.5

1 x>0.5
(50)
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Figure 5. TP2: pseudo-transient convergence, discrete upwind.

The difference between u and the approximate solution uh was measured in the L1-norm

‖u − uh‖1 =
∫

�
|u − uh | dx ≈ ∑

i
mi |u(xi , yi ) − ui | (51)

as well as in the L2-norm defined by the following formula:

‖u − uh‖22 =
∫

�
|u − uh |2 dx ≈ ∑

i
mi |u(xi , yi ) − ui |2 (52)

where mi =
∫
� �i dx are the diagonal coefficients of the lumped mass matrix.

The first three columns of each of Tables III and IV display the refinement level (NLEV), the
number of vertices (NVT) and the overall CPU time. In the next four columns, the total number of
nonlinear cycles (NN), the average number of nonlinear iterations per pseudo-time step (NN/��),
the total number of linear substeps (NL) and the average number of BiCGSTAB iterations required
within each nonlinear step (NL/NN) are presented. All simulations were performed on four
globally refined meshes with three different choices for the parameter �� ∈ {0.01, 0.1, 1.0}. Recall
that the Jacobian operator contains more non-zero matrix entries so that both the assembly and
its application are more costly. If the time step is chosen too small, e.g. ��= 0.01, then Newton’s
method (	= √

�, forcing term from (26)) cannot demonstrate its full potential and falls behind the
defect correction scheme speaking in terms of CPU time. On the other hand, the performance of
the latter one deteriorates if larger time steps are employed whereas the moderate extra costs for
our algebraic Newton approach pay off.

Figure 5 illustrates the pseudo-transient convergence behaviour which is quite similar for both
nonlinear solution strategies. Only a moderate number of 9–10 steps is required to attain the
steady-state solution if large time steps, e.g. �� = 1.0, are adopted. This is where the benefit of
the unconditionally stable backward-Euler method comes into play. In contrast, about 10 times
more outer iterations have to be performed, if the step size is reduced to �� = 0.01 which is
inappropriate for the simulation of steady-state flow problems. It is worth mentioning that the use
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Figure 6. TP2: pseudo-transient convergence, FEM-TVD.

of an explicit time-stepping scheme would require even smaller values to ensure stability so that
the use of implicit discretizations gains more attraction.

In order to reach steady-state convergence for the high-resolution FEM-TVD scheme, under-
relaxation by the factor �= 0.8 was applied to the fixed-point iteration (18). Figure 6 illustrates
the pseudo-transient convergence behaviour of both nonlinear strategies for two different time step
sizes. Obviously, the standard defect correction scheme suffers from severe convergence problems
for ��= 1.0 if the mesh is refined. This is not the case for the algebraic Newton approach
which allows for an efficient computation of the converged solution in 11–13 outer iterations.
The performance of Newton’s method deteriorates significantly and resembles that of the defect
correction scheme if smaller time steps, e.g. ��= 0.01, are employed.

A more detailed comparison of both methods is given in Tables V and VI. Due to the fact
that the FEM-TVD algorithm was derived on the semi-discrete level, the solution error does not
depend on the size of the underlying time step. However, the fixed-point defect correction scheme
can only be operated at moderately small time steps in order to reach steady-state convergence.
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Newton’s method is free of this drawback and performs best at �� = 1.0. Speaking in terms of
overall efficiency, the solution to the inviscid Burgers’ equation on the finest grid level was obtained
in 23% of the CPU time required by the defect correction method.

6. CONCLUSIONS

In this paper, we demonstrated that implicit high-resolution discretization schemes and efficient so-
lution strategies can be successfully combined. The algebraic flux correction paradigm [10, 13–15]
was revisited. The application of limiters eventually led to nonlinear algebraic systems which called
for strong iterative solution strategies. Due to the lack of a continuous counterpart of the problem
at hand, Newton-type schemes were derived on the fully discrete level. The Jacobian matrix was
approximated by means of second-order divided differences. Each entry of the Newton operator
was rewritten in terms of edge contributions so that an efficient assembly of the Jacobian could be
performed edge by edge. This idea turned out to be an interesting alternative to the elementwise
evaluation of the Jacobian which is traditionally employed in the finite element context [39]. We
identified the individual sources of nonlinearities, i.e. the physical one present in the conservation
law and the numerical one engendered by the flux limiter, and analysed their contributions to
the global Jacobian. The indirect coupling of solution values at non-neighbouring vertices via the
nodal correction factors made it necessary to extend the sparsity pattern of the underlying finite
element matrix. Due to the similarities to edge-oriented stabilization techniques, existing storage
algorithms could be adopted with slight modifications. An alternative strategy for generating the
connectivity pattern by means of matrix multiplication was derived based on classical graph theory.

High-resolution schemes based on algebraic flux correction techniques can be equipped with
efficient nonlinear solution strategies of algebraic Newton-type. This concept can also be extended
[16] to flux limiters which are designed for the treatment of transient flows, e.g. the semi-implicit
FEM-FCT limiter proposed in [10]. Even in case the time step needs to be moderately small due
to physical reasons, the use of (semi-)implicit time-stepping schemes may be favourable due to
less severe stability restrictions. The benefits of implicit discretization schemes become even more
obvious if local grid refinement is employed which would require impractically small time steps
for explicit methods. A promising direction for further research is the application of the discrete
Newton method to the Euler and Navier–Stokes equations for which algebraic flux correction can
be performed as explained in [17].
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Principles, Algorithms, and Applications, Kuzmin D, Löhner R, Turek S (eds). Springer: Germany, 2005; 207–250.

18. Jameson A. Computational algorithms for aerodynamic analysis and design. Applied Numerical Mathematics
1993; 13(5):383–422.

19. Jameson A. Analysis and design of numerical schemes for gas dynamics 1. Artificial diffusion, upwind biasing,
limiters and their effect on accuracy and multigrid convergence. International Journal of Computational Fluid
Dynamics 1995; 4:171–218.
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